

Amateur Radio Station, Waterbeach. 8km North Of Cambridge JO02cg

The Bodger's Guide to Es'hailSat / QO100

AMSAT P4-A

First geostationary amateur radio transponder (incl. DATV) on

Es'hail-2

<u>Launch:</u> Q4 2018 - <u>Position:</u> 26 deg East - <u>Lifetime:</u> 15+ years

www.g4bao.com

What is Es'hailsat?

- Es'hailSat2 is a Geostationary Satellite launched by SpaceX.
- It was funded by the Qatari government as part of the 2022 football World Cup preparations.

- It carries two Amateur radio transponders built by Amsat-de as part of the "Phase 4" project.
- A narrowband SSB/CW transponder
- A Wideband transponder for DATV and other high bandwidth modes
- It has the Amsat designation "QO100"

Why the Name "Es'hailSat?

- The satellite is named after the star we know as "Canopus"
- In Arabic, Canopus is "Sohail"
- So the name of our satellite is 'The Canopus', or in Arabic 'ElSohail'
- Since Arabs find it hard to pronounce the combination of I and s, they drop the I, Leaving 'ESohail'.
- An apostrophe is added to emphasize the S 'ES'ohail'.
- And since the o (or u) will be pronounced anyway, it is almost allways dropped.
- So that is how we get 'Es'hail'. Pronounced 'ESohayl'

What is a Geostationary Satellite?

- The orbital period of a Satellite is proportional to it's distance from the Earth.
- At only one distance, the orbital period equals the Earth's rotation period.
- In this orbit, Satellites appear to stay at the same point above the earth.
- This "Geostationary Orbit" is at approximately 36000km.
- This Orbit is known as the "Clarke Belt" After Arthur C Clarke

Photo - Wikipedia

The Es'hailSat transponders

Frequencies narrow band (NB) transponder (bandwidth 250 kHz):

=======================================	lower end	upper end	polarisation
Uplink	2400.050 MHz	2400.300 MHz	RHCP
Downlink	10489.550 MHz	10489.800 MHz	vertical

Frequencies wide band (WB) transponder (bandwidth 8 MHz):

	lower end	upper end	polarisation
Uplink	2401.500 MHz	2409.500 MHz	RHCP
Downlink	10491.000 MHz	10499.000 MHz	horizontal

Amsat-DL

Amsat-DL

System requirements as per Amsat - DL

Minimum setup for SSB communications:

RX Antenna	60-90 cm SAT-TV dish	
Receiver	LNB with power injector and DVB-T dongle + SDR software (for example SDR#)	
	OR	
	3 cm LNA with downconverter to 70cm	
Transmitter	10W PEP in 60-90 cm dish plus upconverter from	
	144 MHz	

Minimum setup for **DATV** (DVB-S2) communications:

RX Antenna	60-90 cm SAT-TV dish	
Receiver	modified LNB with standard satellite receiver box (DVB-S2)	
	OR	
	modified LNB with PCI DVB-S2 cards for PC use	
Transmitter	25W PEP in 2.4m dish plus DVB-S2 modulator	
	for a 2MSym/s videostream	

Amsat-DL

Getting Started. No radio equipment required!

- Look at the Goonhilly Narrowband Web SDR
- https://eshail.batc.org .uk/nb/

Getting Started Simple receive setup for the Narrowband transponder

- 45cm Sky dish and LNB vertical polarisation.
 - Digitalis-direct on EBay do this dish and tripod for £40
- PC / Android phone + RTL-SDR dongle or Funcube Dongle in SSB-CW mode
- LNB has a LO of 9750, so 10489.55 to 10489.800 produces an IF of 739.550 – 739.800 MHz
- Find the Narrowband Data beacon on 10489.800, CW on 10489.550MHz

Photo digitalis-direct

Getting Started – Finding the Satellite

Look on the https://www.dishpointer.com/
 Website

Getting Started – Finding the Satellite

Satellite shares the 26 deg east Orbital Slot with Arabsat BADR

So for King's Lynn, Dishpointer.com calculates

 Address: King's Lynn Latitude: 52.7517°
 Longitude: 0.4023°

• Satellite: 26E ARABSAT

Florestion

Elevation: 25.2°

Azimuth (true): 149.0°

Azimuth (magn.): 149.4°

Getting Started Transmitting SSB and CW

- SG Lab 432-2400 transverter
- http://www.sg-lab.com/TR2300/tr2300.html
- 20W PA coming soon
- With a 1.2m dish I can access the
- transponder with 200mW!

Getting Started – TX Dish feeds

Simple Linear polarised Loop

- Dual band Circular Polarised patch feed designed by G0MJW
- With Modified LNB and dielectric lens

Photos - G4BAO

My Setup

- 1.2m Offset dish + G0MJW 10.4/2.4 GHz patch feed
- Receive Octagon PLL LNB locked to a 25MHz Leo Bodnar GPSDO

My Setup

- SDR Sharp and Icom IC8500 tuning around 740MHz
- SSB/CW TX FT817 @432MHz, SG lab transverter 2W
- DATV TX DATV express running on I5 GByte Brix PC with Lime-USB SDR
- 25W PA using retuned 1900MHz Cellular Module

Advanced stuff – Injection Locking LNBs

- Octagon OSLO
- Feed 25 (27) MHz to one side of the crystal
- Via 1k and 1nF to ground
- Via small filed hole in the case

Advanced stuff – Injection Locking LNBs

- Octagon OSLO
- Short coax to SMA socket through plastic case

Advanced stuff

– Adding a simple linear loop as a transmit feed

Advanced stuff The wideband transponder – Digital TV

- QO100 uses DVBS2 at all rates up to 1000kS/s
- 90cm dish minimum needed to receive - No LNB Lock required

Advanced stuff The wideband transponder – Digital TV

- Around 40W TX power at this dish size
- I can use the transponder at 25W / 500kS/s with 25 watts

Amateur Radio Station, Waterbeach. 8km North Of Cambridge JO02cg

So That's it! Get receiving and take it from there!

AMSAT P4-A

First geostationary amateur radio transponder (incl. DATV) on

Es'hail-2

<u>Launch:</u> Q4 2018 - <u>Position:</u> 26 deg East - <u>Lifetime:</u> 15+ years WWW.q4bao.com

Acknowledgements

Photos – M0DTS, M0EYC, ON4BHM
TX patch feed – Dr Mike Willis G0MJW
BATC and goonhilly.org for the WebSDR
Minitouner – F6DZP
DATV Express - G0GUO
The BATC shop

This presentation will be available on www.g4bao.com in due course

