• Moving up to 1.3GHz

• A VHF DXer's guide to the first band above a GHz

Dr John Worsnop G4BAO

RadCom GHz Bands Columnist

RSGB Propagation Studies Committee

Moving up to 1.3GHz

- "23cms" the lowest of the GHz bands
- Myths and Magic
 - What are you likely to work?
 - What's the same?
 - What's different?
- System Engineering above a GHz – what matters

Moving up to 1.3GHz

- Breaking the 3 big GHz myths
 - Ah, but GHz bands are all line of sight!
 - And it's very expensive!
 - And it's too technical for me!

#1 - But it's all line of sight and hill-topping above a GHz

- May I introduce
- The G4BAO "hole"
 - 4 metres ASL
 - Antenna 8m AGL

#1 - But it's all line of sight and hill-topping above a GHz

- My squares map
- 81 squares, 20 DXCCs via terrestrial propagation
- Mostly with just 35 Watts from a hole in the ground
- Including EME, 125 squares, 38 DXCCs total.

#2 - But its Really Expensive!

1.3GHz equipment - New (approx. prices October 2016 assuming you already have a 2m multimode driver)		A new D - STAR Setup?		
		Icom ID-51E handheld	£270	
1296/144 MHz SG lab transverter	£150	Comet GP-1 antenna	£70	
23 element Tonna Yagi + coax	£90	Total cost	£340	
Total cost	£240			
Preamp kit	£60	A decent WARC Bands setup?		
PA kit	£100	•		
Surplus coax relay	£20	Cushcraft A3WS beam	£560	
Waterproof Box to put it all in	£20			
Total cost	£440	Wideband Scanning?	d Scanning?	
Total Cost	2.110	- Funcube Dongle	£125	
		Diamond D190 Discone antenna +coax	£100	
		Total cost	£225	

#3 - But its Too Technical for me!

- Beginners setup
- 23cms is JUST the same as 2m as far as equipment is concerned.
 - A transceiver, (a transverter) and a Yagi

Moving up to 1.3GHz

What's the same?

- Can still use Yagis/coax feeds
- IMHO, slightly improved propagation over VHF

What's different

- Much less band noise
- Troposcatter and Aircraft Scatter are much improved
- Low visual impact antennas
- Dishes become practical
- (leading to higher bands with multiband feeds)
- Fewer "Black Box" solutions, more "Silver Box" solutions
- Higher gain antennas can generate higher EIRPs
- Small dish/big Yagi EME becomes practical with JT modes
- No Es

Moving up to 1.3GHz – DX Propagation modes

- Tropospheric enhancement and Ducting
 - Weather-dependent
 - Enhanced range up to 2500km
 - BIG ADVANTAGE NEAR THE COAST
 - Sea ducts
- Aircraft Scatter
 - 24/7 Over the horizon up to 800km
- Tropo Scatter
 - 24/7 Over the horizon up to 500km
- EME

Moving up to 1.3GHz – DX Propagation modes

• LY2WR via Tropo >1600km

Moving up to 1.3GHz – DX Propagation modes

• GB3MHZ via Aircraft scatter and direct

Moving up to 1.3GHz – Current records

- UK 2617km G6LEU to EA8XS (1989)
- World 4143km KH6HME to XE2/N6XQ (1985)
- EME 18773km PA0SSB to ZL3AAD (1983)

Moving up to 1.3GHz – It's ALL about System Engineering

- Antenna performance
- System losses
- Receiver performance
 - Signal handling
 - Noise figure
- Transmitter Power

Photo G4DDK

Photo SM4DHN Labetech AB

Moving up to 1.3GHz – Antenna performance

- High gain small antennas are possible
 - 3 metre boom on 144 gives 13dBi
 - 3 metre boom on 1296 gives 20dBi
 - 1.2 metre dish on 1296 gives 23dBi
- Single 28element Yagi
 - Smaller than a typical TV antenna
 - 1.6m long
 - 17dBi

Moving up to 1.3GHz – System losses

- Loss reduction is king on the GHz Bands
 - RG213 loss at 1.3GHz is 3dB per 10m
 - FSJ4-50 is 1.35dB per 10m
 - M&P ultraflex13 is 1.2dB per 10m
- Use masthead preamps and PAs to reduce losses

M1BXF's masthead G4BAO PA & G4DDK Preamp with switching - built for G3PYE/P

Photo M1BXF www.geekshed.co.uk

Moving up to 1.3GHz – System losses

Two Bands, three relays, one low loss feeder

Moving up to 1.3GHz – System losses

- Where are losses crucial?
 - TX loss can be overcome with a bigger PA
- How do losses affect your RX?
 - Noise figure = S/N in S/N out (in dB)
 - i.e. how much your system degrades the S/N
- Input S/N is determined by your antenna's environment so use low noise antennas
- Output S/N is determined by your system Noise figure

Moving up to 1.3GHz – Receiver performance

System Noise figure

- 2 stages with gains G1, G2 and F1, F2 (not in dB)
- Noise figure (dB) = 10 log(noise factor)

- Overall gain =G1xG2
- Overall Noise factor = F1 + (F2-1)/G1 +... (Fn-1)/G1G2..Gn
- (Fris equation)
- Second stage contribution mainly determined by first stage gain

Practical example - Preamp gain = 26dB

- Overall Noise factor F = 1.07 + (5-1)/400 = 1.08
- Overall Noise figure = 10logF = 0.33 dB
- 2nd stage adds just **0.03dB** to NF

Practical example - Preamp gain = 12dB

- Overall Noise factor = 1.07 + (5-1)/16 = 1.32
- Overall Noise figure = 1.2 dB
- Same 2nd stage now adds **0.9dB** to NF!

- Practical example passive losses,
- NF(dB) = loss (dB)

- Overall Noise factor = 1.122 + (1.07-1)/0.891 + (5-1)0.891x400
- 1.122 + 0.0786 + 0.0112 = 1.212
- Overall Noise figure = 0.83 dB
- So the 0.5dB feeder loss adds directly to the system noise figure

- Practical example passive losses,
- Now with loss after preamp

- Overall Noise factor = 1.07 + (1.122-1)/400 + (5-1)0.891x400
- 1.07 +
 0.00305 +
 0.0112
 = 1.071
- Overall Noise figure = 0.3 dB
- So the 0.5dB feeder loss after the preamp can be ignored

- So how important is noise figure really?
- Use VK3UM RX performance calculator www.vk3um.com

- Effect of Antenna noise (Sky temperature)
- RX Noise figure F=1.45 dB Cold sky 10K sensitivity = -142.4 dBm
- RX Noise figure F=0.45 dB Cold sky 10K sensitivity = -147.9 dBm

5.5dB improvement

- RX Noise figure F=1.45 dB Horizon sky 294K sensitivity = -138.4 dBm
- RX Noise figure F=0.45 dB Horizon sky 294K sensitivity = -139.4 dBm
- Only 1dB improvement
- Noise figure less crucial on terrestrial systems
- Aim for 1dB NF overall

Moving up to 1.3GHz – Receiver performance

- System Noise figure contributors
 - Minimise losses in front of the preamp
 - Filters must be low loss
 - Higher gain = lower 2nd stage contribution
 - Can use lossy RX feeders on 2 feeder systems
- Watch out for first and second stage overload
 - From out of band TV and cellular transmitters
 - Filters AFTER preamp if possible

Moving up to 1.3GHz – Transmitter power

- 1-10W good for local working, Tropo DX in lifts
 - Simple, cheap, no external switching or specialist components required
- 50 100W Aircraft /Tropo Scatter now possible
 - Range up to 500km. JT EME with 2m dish to big stations
- 100- 400W Aircraft/Tropo Scatter now easy
 - Range up to 800km. CW EME with 2m dish or JT with 2 Yagis to big stations
 - Care needed! Relays, preamp protection, high power components

Photo G4BAO

Photo SM4DHN Labetech AB

Moving up to 1.3GHz – Summing it all up

- Don't believe all the myths
- "23" is a great band for "covert" operation
 - small antennas
- "23" is a great band for a noisy VHF site
- Site is not everything
 - Good System Engineering can help an average site
- There is an option from a poor site EME
- System Engineering is everything

Moving up to 1.3GHz – Summing it all up

System Engineering is everything

- Losses are important
- Keep losses low between front end and antenna
- Use a masthead preamp
- Avoid overloading from in and out of band signals
- Use a RX filter After the preamp if you can
- Consider a dual feeder system to simplify switching
- Then easy to split off RX to multiple receivers / SDRs
- Oh yes..... And use a band spectrum display/SDR

Find out more...

- Search the internet. There are hundreds of great amateur microwave websites
- Buy or borrow basic microwave books
- Visit a microwaver at home or out in a portable contest or activity day... you'll be made very welcome
- (dates shown on www.microwavers.org/operating/
- Follow @UKGHZ on Twitter
- Look at the UKuG Youtube channel at http://bit.ly/2940YnM

UK Microwave Group

Nearly 450 members

- ONLY £6 a year membership
- "Chipbank"

H

UKuG

- Free surface mount components
- Scatterpoint monthly e-magazine
- Member's Loan equipment
 - for 5.7, 10, 24 and 76GHz
- Beacon Hardware and other project funding available
- Support for clubs wanting to start on the GHz Bands
- For local committee contact, see UKuG web site www.microwavers.org

UK Microwave Group

UKuG currently supports 5 main Round Tables each year

- Martlesham (near Ipswich)
- Finningley (nr Doncaster)
- Harwell (near Didcot)
- Burntisland (near Edinburgh)
- Crawley (Sussex)

H

